Cargando…

Privacy-Aware Relevant Data Access with Semantically Enriched Search Queries for Untrusted Cloud Storage Services

Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Pervez, Zeeshan, Ahmad, Mahmood, Khattak, Asad Masood, Lee, Sungyoung, Chung, Tae Choong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003394/
https://www.ncbi.nlm.nih.gov/pubmed/27571421
http://dx.doi.org/10.1371/journal.pone.0161440
Descripción
Sumario:Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider.