Cargando…

A Flexible Microarray Data Simulation Model

Microarray technology allows monitoring of gene expression profiling at the genome level. This is useful in order to search for genes involved in a disease. The performances of the methods used to select interesting genes are most often judged after other analyzes (qPCR validation, search in databas...

Descripción completa

Detalles Bibliográficos
Autor principal: Dembélé, Doulaye
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003477/
https://www.ncbi.nlm.nih.gov/pubmed/27605184
http://dx.doi.org/10.3390/microarrays2020115
Descripción
Sumario:Microarray technology allows monitoring of gene expression profiling at the genome level. This is useful in order to search for genes involved in a disease. The performances of the methods used to select interesting genes are most often judged after other analyzes (qPCR validation, search in databases...), which are also subject to error. A good evaluation of gene selection methods is possible with data whose characteristics are known, that is to say, synthetic data. We propose a model to simulate microarray data with similar characteristics to the data commonly produced by current platforms. The parameters used in this model are described to allow the user to generate data with varying characteristics. In order to show the flexibility of the proposed model, a commented example is given and illustrated. An R package is available for immediate use.