Cargando…

Programming Light-Harvesting Efficiency Using DNA Origami

[Image: see text] The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological “na...

Descripción completa

Detalles Bibliográficos
Autores principales: Hemmig, Elisa A., Creatore, Celestino, Wünsch, Bettina, Hecker, Lisa, Mair, Philip, Parker, M. Andy, Emmott, Stephen, Tinnefeld, Philip, Keyser, Ulrich F., Chin, Alex W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2016
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003508/
https://www.ncbi.nlm.nih.gov/pubmed/26906456
http://dx.doi.org/10.1021/acs.nanolett.5b05139
_version_ 1782450661319770112
author Hemmig, Elisa A.
Creatore, Celestino
Wünsch, Bettina
Hecker, Lisa
Mair, Philip
Parker, M. Andy
Emmott, Stephen
Tinnefeld, Philip
Keyser, Ulrich F.
Chin, Alex W.
author_facet Hemmig, Elisa A.
Creatore, Celestino
Wünsch, Bettina
Hecker, Lisa
Mair, Philip
Parker, M. Andy
Emmott, Stephen
Tinnefeld, Philip
Keyser, Ulrich F.
Chin, Alex W.
author_sort Hemmig, Elisa A.
collection PubMed
description [Image: see text] The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological “nanomachines” in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks.
format Online
Article
Text
id pubmed-5003508
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-50035082016-08-30 Programming Light-Harvesting Efficiency Using DNA Origami Hemmig, Elisa A. Creatore, Celestino Wünsch, Bettina Hecker, Lisa Mair, Philip Parker, M. Andy Emmott, Stephen Tinnefeld, Philip Keyser, Ulrich F. Chin, Alex W. Nano Lett [Image: see text] The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological “nanomachines” in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks. American Chemical Society 2016-02-23 2016-04-13 /pmc/articles/PMC5003508/ /pubmed/26906456 http://dx.doi.org/10.1021/acs.nanolett.5b05139 Text en Copyright © 2016 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Hemmig, Elisa A.
Creatore, Celestino
Wünsch, Bettina
Hecker, Lisa
Mair, Philip
Parker, M. Andy
Emmott, Stephen
Tinnefeld, Philip
Keyser, Ulrich F.
Chin, Alex W.
Programming Light-Harvesting Efficiency Using DNA Origami
title Programming Light-Harvesting Efficiency Using DNA Origami
title_full Programming Light-Harvesting Efficiency Using DNA Origami
title_fullStr Programming Light-Harvesting Efficiency Using DNA Origami
title_full_unstemmed Programming Light-Harvesting Efficiency Using DNA Origami
title_short Programming Light-Harvesting Efficiency Using DNA Origami
title_sort programming light-harvesting efficiency using dna origami
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003508/
https://www.ncbi.nlm.nih.gov/pubmed/26906456
http://dx.doi.org/10.1021/acs.nanolett.5b05139
work_keys_str_mv AT hemmigelisaa programminglightharvestingefficiencyusingdnaorigami
AT creatorecelestino programminglightharvestingefficiencyusingdnaorigami
AT wunschbettina programminglightharvestingefficiencyusingdnaorigami
AT heckerlisa programminglightharvestingefficiencyusingdnaorigami
AT mairphilip programminglightharvestingefficiencyusingdnaorigami
AT parkermandy programminglightharvestingefficiencyusingdnaorigami
AT emmottstephen programminglightharvestingefficiencyusingdnaorigami
AT tinnefeldphilip programminglightharvestingefficiencyusingdnaorigami
AT keyserulrichf programminglightharvestingefficiencyusingdnaorigami
AT chinalexw programminglightharvestingefficiencyusingdnaorigami