Cargando…
Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease
Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003744/ https://www.ncbi.nlm.nih.gov/pubmed/26996412 http://dx.doi.org/10.1016/j.brainres.2016.02.037 |
_version_ | 1782450678794289152 |
---|---|
author | March, Zachary M. King, Oliver D. Shorter, James |
author_facet | March, Zachary M. King, Oliver D. Shorter, James |
author_sort | March, Zachary M. |
collection | PubMed |
description | Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications. |
format | Online Article Text |
id | pubmed-5003744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-50037442017-09-15 Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease March, Zachary M. King, Oliver D. Shorter, James Brain Res Article Key challenges faced by all cells include how to spatiotemporally organize complex biochemistry and how to respond to environmental fluctuations. The budding yeast Saccharomyces cerevisiae harnesses alternative protein folding mediated by yeast prion domains (PrDs) for rapid evolution of new traits in response to environmental stress. Increasingly, it is appreciated that low complexity domains similar in amino acid composition to yeast PrDs (prion-like domains; PrLDs) found in metazoa have a prominent role in subcellular cytoplasmic organization, especially in relation to RNA homeostasis. In this review, we highlight recent advances in our understanding of the role of prions in enabling rapid adaptation to environmental stress in yeast. We also present the complete list of human proteins with PrLDs and discuss the prevalence of the PrLD in nucleic-acid binding proteins that are often connected to neurodegenerative disease, including: ataxin 1, ataxin 2, FUS, TDP-43, TAF15, EWSR1, hnRNPA1, and hnRNPA2. Recent paradigm-shifting advances establish that PrLDs undergo phase transitions to liquid states, which contribute to the structure and biophysics of diverse membraneless organelles. This structural functionality of PrLDs, however, simultaneously increases their propensity for deleterious protein-misfolding events that drive neurodegenerative disease. We suggest that even these PrLD-misfolding events are not irreversible and can be mitigated by natural or engineered protein disaggregases, which could have important therapeutic applications. 2016-03-18 2016-09-15 /pmc/articles/PMC5003744/ /pubmed/26996412 http://dx.doi.org/10.1016/j.brainres.2016.02.037 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article March, Zachary M. King, Oliver D. Shorter, James Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease |
title | Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease |
title_full | Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease |
title_fullStr | Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease |
title_full_unstemmed | Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease |
title_short | Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease |
title_sort | prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003744/ https://www.ncbi.nlm.nih.gov/pubmed/26996412 http://dx.doi.org/10.1016/j.brainres.2016.02.037 |
work_keys_str_mv | AT marchzacharym prionlikedomainsasepigeneticregulatorsscaffoldsforsubcellularorganizationanddriversofneurodegenerativedisease AT kingoliverd prionlikedomainsasepigeneticregulatorsscaffoldsforsubcellularorganizationanddriversofneurodegenerativedisease AT shorterjames prionlikedomainsasepigeneticregulatorsscaffoldsforsubcellularorganizationanddriversofneurodegenerativedisease |