Cargando…
Bacterial community structure and function shift across a northern boreal forest fire chronosequence
Soil microbial responses to fire are likely to change over the course of forest recovery. Investigations on long-term changes in bacterial dynamics following fire are rare. We characterized the soil bacterial communities across three different times post fire in a 2 to 152-year fire chronosequence b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004109/ https://www.ncbi.nlm.nih.gov/pubmed/27573440 http://dx.doi.org/10.1038/srep32411 |
Sumario: | Soil microbial responses to fire are likely to change over the course of forest recovery. Investigations on long-term changes in bacterial dynamics following fire are rare. We characterized the soil bacterial communities across three different times post fire in a 2 to 152-year fire chronosequence by Illumina MiSeq sequencing, coupled with a functional gene array (GeoChip). The results showed that the bacterial diversity did not differ between the recently and older burned areas, suggesting a concomitant recovery in the bacterial diversity after fire. The differences in bacterial communities over time were mainly driven by the rare operational taxonomic units (OTUs < 0.1%). Proteobacteria (39%), Acidobacteria (34%) and Actinobacteria (17%) were the most abundant phyla across all sites. Genes involved in C and N cycling pathways were present in all sites showing high redundancy in the gene profiles. However, hierarchical cluster analysis using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting potential differences in maintaining essential biogeochemical soil processes. Soil temperature, pH and water contents were the most important factors in shaping the bacterial community structures and function. This study provides functional insight on the impact of fire disturbance on soil bacterial community. |
---|