Cargando…
Integrating multiple molecular sources into a clinical risk prediction signature by extracting complementary information
BACKGROUND: High-throughput technology allows for genome-wide measurements at different molecular levels for the same patient, e.g. single nucleotide polymorphisms (SNPs) and gene expression. Correspondingly, it might be beneficial to also integrate complementary information from different molecular...
Autores principales: | Hieke, Stefanie, Benner, Axel, Schlenl, Richard F., Schumacher, Martin, Bullinger, Lars, Binder, Harald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004308/ https://www.ncbi.nlm.nih.gov/pubmed/27578050 http://dx.doi.org/10.1186/s12859-016-1183-6 |
Ejemplares similares
-
Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling
por: Hieke, Stefanie, et al.
Publicado: (2016) -
SEURAT: Visual analytics for the integrated analysis of microarray data
por: Gribov, Alexander, et al.
Publicado: (2010) -
The Complementary and Alternative Medicine Information Source Book
por: Fan, Ka wai
Publicado: (2005) -
An Exploration of Complementary Feeding Practices, Information Needs and Sources
por: Garcia, Ada L., et al.
Publicado: (2019) -
Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
por: Binder, Harald, et al.
Publicado: (2009)