Cargando…

The movement of water and cryoprotectants across the plasma membrane of mammalian oocytes and embryos and its relevance to vitrification

The permeability of the plasma membrane to water and cryoprotectants is one of the most important factors for determining suitable conditions for vitrification of mammalian oocytes and embryos. In mouse oocytes and early stage embryos, water and cryoprotectants move slowly, principally by simple dif...

Descripción completa

Detalles Bibliográficos
Autor principal: EDASHIGE, Keisuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society for Reproduction and Development 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004785/
https://www.ncbi.nlm.nih.gov/pubmed/27193425
http://dx.doi.org/10.1262/jrd.2016-048
Descripción
Sumario:The permeability of the plasma membrane to water and cryoprotectants is one of the most important factors for determining suitable conditions for vitrification of mammalian oocytes and embryos. In mouse oocytes and early stage embryos, water and cryoprotectants move slowly, principally by simple diffusion. In contrast, in morulae (and probably blastocysts), water, glycerol, and ethylene glycerol move rapidly, principally by facilitated diffusion via aquaporin 3, and DMSO moves rapidly via channels other than aquaporin 3. However, propylene glycol moves principally by simple diffusion. In cows and pigs, similar results were obtained. However, in bovine morulae, DMSO moves principally by simple diffusion. In pigs, permeability to water, glycerol, and ethylene glycol increases not at the morula stage but at the blastocyst stage, and increases further at the expanded blastocyst stage. Therefore, in general, the permeability of mammalian oocytes and early stage embryos to water and cryoprotectants is low. Then, at later stages, the permeability to water and some cryoprotectants markedly increases and occurs by facilitated diffusion via channels, although there are some species-specific differences.