Cargando…
Jointly Feature Learning and Selection for Robust Tracking via a Gating Mechanism
To achieve effective visual tracking, a robust feature representation composed of two separate components (i.e., feature learning and selection) for an object is one of the key issues. Typically, a common assumption used in visual tracking is that the raw video sequences are clear, while real-world...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004979/ https://www.ncbi.nlm.nih.gov/pubmed/27575684 http://dx.doi.org/10.1371/journal.pone.0161808 |
Sumario: | To achieve effective visual tracking, a robust feature representation composed of two separate components (i.e., feature learning and selection) for an object is one of the key issues. Typically, a common assumption used in visual tracking is that the raw video sequences are clear, while real-world data is with significant noise and irrelevant patterns. Consequently, the learned features may be not all relevant and noisy. To address this problem, we propose a novel visual tracking method via a point-wise gated convolutional deep network (CPGDN) that jointly performs the feature learning and feature selection in a unified framework. The proposed method performs dynamic feature selection on raw features through a gating mechanism. Therefore, the proposed method can adaptively focus on the task-relevant patterns (i.e., a target object), while ignoring the task-irrelevant patterns (i.e., the surrounding background of a target object). Specifically, inspired by transfer learning, we firstly pre-train an object appearance model offline to learn generic image features and then transfer rich feature hierarchies from an offline pre-trained CPGDN into online tracking. In online tracking, the pre-trained CPGDN model is fine-tuned to adapt to the tracking specific objects. Finally, to alleviate the tracker drifting problem, inspired by an observation that a visual target should be an object rather than not, we combine an edge box-based object proposal method to further improve the tracking accuracy. Extensive evaluation on the widely used CVPR2013 tracking benchmark validates the robustness and effectiveness of the proposed method. |
---|