Cargando…
Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification
In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN) and deep belief network (DBN). However they are suffering from some problems like local minima, slow convergence rate, and intensive human inte...
Autores principales: | Pang, Shan, Yang, Xinyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005768/ https://www.ncbi.nlm.nih.gov/pubmed/27610128 http://dx.doi.org/10.1155/2016/3049632 |
Ejemplares similares
-
A Machine Learning and Deep Learning Approach for Recognizing Handwritten Digits
por: Sharma, Ayushi, et al.
Publicado: (2022) -
Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the ‘Extreme Learning Machine’ Algorithm
por: McDonnell, Mark D., et al.
Publicado: (2015) -
Convolutional ensembles for Arabic Handwritten Character and Digit Recognition
por: Palatnik de Sousa, Iam
Publicado: (2018) -
A Novel Handwritten Digit Classification System Based on Convolutional Neural Network Approach
por: Yahya, Ali Abdullah, et al.
Publicado: (2021) -
Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)
por: Ahlawat, Savita, et al.
Publicado: (2020)