Cargando…
A New Strategy for Analyzing Time-Series Data Using Dynamic Networks: Identifying Prospective Biomarkers of Hepatocellular Carcinoma
Time-series metabolomics studies can provide insight into the dynamics of disease development and facilitate the discovery of prospective biomarkers. To improve the performance of early risk identification, a new strategy for analyzing time-series data based on dynamic networks (ATSD-DN) in a system...
Autores principales: | Huang, Xin, Zeng, Jun, Zhou, Lina, Hu, Chunxiu, Yin, Peiyuan, Lin, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006023/ https://www.ncbi.nlm.nih.gov/pubmed/27578360 http://dx.doi.org/10.1038/srep32448 |
Ejemplares similares
-
Metabolomics Identifies Biomarker Pattern for Early Diagnosis of Hepatocellular Carcinoma: from Diethylnitrosamine Treated Rats to Patients
por: Zeng, Jun, et al.
Publicado: (2015) -
A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks
por: Huang, Xin, et al.
Publicado: (2017) -
A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma
por: Zhang, Weijian, et al.
Publicado: (2015) -
Finding Structure in Time: Visualizing and Analyzing Behavioral Time Series
por: Xu, Tian Linger, et al.
Publicado: (2020) -
Comparison of Statistical Models for Analyzing Wheat Yield Time Series
por: Michel, Lucie, et al.
Publicado: (2013)