Cargando…
Cathodic-controlled and near-infrared organic upconverter for local blood vessels mapping
Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006079/ https://www.ncbi.nlm.nih.gov/pubmed/27578199 http://dx.doi.org/10.1038/srep32324 |
Sumario: | Organic materials are used in novel optoelectronic devices because of the ease and high compatibility of their fabrication processes. Here, we demonstrate a low-driving-voltage cathodic-controlled organic upconverter with a mapping application that converts near-infrared images to produce images of visible blood vessels. The proposed upconverter has a multilayer structure consisting of a photosensitive charge-generation layer (CGL) and a phosphorescent organic light-emitting diode (OLED) for producing clear images with a high resolution of 600 dots per inch. In this study, temperature-dependent electrical characterization was performed to analyze the interfacial modification of the cathodic-controlled upconverter. The result shows that the upconverter demonstrated a high conversion efficiency of 3.46% because of reduction in the injection barrier height at the interface between the CGL and the OLED. |
---|