Cargando…

Biomimetic surface patterning for long-term transmembrane access

Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is genera...

Descripción completa

Detalles Bibliográficos
Autores principales: VanDersarl, Jules J., Renaud, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5006161/
https://www.ncbi.nlm.nih.gov/pubmed/27577519
http://dx.doi.org/10.1038/srep32485
Descripción
Sumario:Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the application of a vacuum to the cell surface. This interface can enable cell-attached and whole-cell recordings that are stable to 72 hours, and generates no visible damage to the cell. The electrodes can be very small (<5 μm) and closely packed, offering a high density platform for cellular measurement.