Cargando…
A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein
Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because less light is scattered, absorbed, or reemitted by endogenous biomolecules. A new class of FP was developed from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved F...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007177/ https://www.ncbi.nlm.nih.gov/pubmed/27479328 http://dx.doi.org/10.1038/nmeth.3935 |
Sumario: | Far-red fluorescent proteins (FPs) are desirable for in vivo imaging because less light is scattered, absorbed, or reemitted by endogenous biomolecules. A new class of FP was developed from an allophycocyanin α-subunit (APCα). Native APC requires a lyase to incorporate phycocyanobilin. The evolved FP, named small Ultra-Red FP (smURFP), covalently attaches biliverdin (BV) without a lyase, and has 642/670 nm excitation/emission peaks, a large extinction coefficient (180,000 M(−1)cm(−1)) and quantum yield (18%), and comparable photostability to eGFP. SmURFP has significantly increased BV incorporation rate and protein stability compared to the bacteriophytochrome (BPH) FPs. BV supply is limited by membrane permeability, so expression of heme oxygenase-1 with heme precursors increases fluorescence of BPH/APCα FPs. SmURFP (but not BPH FPs) can incorporate a more membrane-permeant BV analog, making smURFP fluorescence in situ comparable to FPs from jellyfish/coral. A far-red/near-infrared fluorescent cell cycle indicator was created with smURFP and a BPH FP. |
---|