Cargando…
The mammalian dynein/dynactin complex is a strong opponent to kinesin in a tug-of-war competition
Kinesin and dynein motors transport intracellular cargos bidirectionally by pulling them in opposite directions along microtubules, through a process frequently described as a ‘tug of war’. While kinesin produces a 6 pN force, mammalian dynein was found to be a surprisingly weak motor (0.5–1.5 pN) i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007201/ https://www.ncbi.nlm.nih.gov/pubmed/27454819 http://dx.doi.org/10.1038/ncb3393 |
Sumario: | Kinesin and dynein motors transport intracellular cargos bidirectionally by pulling them in opposite directions along microtubules, through a process frequently described as a ‘tug of war’. While kinesin produces a 6 pN force, mammalian dynein was found to be a surprisingly weak motor (0.5–1.5 pN) in vitro, suggesting many dyneins are required to counteract the pull of a single kinesin. Mammalian dynein’s association with dynactin and Bicaudal-D2 (BICD2) activates its processive motility, but how this affects dynein’s force output remained unknown. Here, we show that formation of the dynein-dynactin-BICD2 (DDB) complex increases human dynein’s force production to 4.3 pN. An in vitro tug-of-war assay revealed that a single DDB successfully resists a single kinesin. Contrary to previous reports, the clustering of many dyneins is not required to win the tug-of-war. Our work reveals the key role of dynactin and a cargo adaptor protein in shifting the balance of forces between dynein and kinesin motors during intracellular transport. |
---|