Cargando…
Pharmacokinetics and excretion of (14)C-omacetaxine in patients with advanced solid tumors
Background Omacetaxine mepesuccinate is indicated in adults with chronic myeloid leukemia resistant and/or intolerant to ≥ 2 tyrosine kinase inhibitor treatments. This phase I study assessed the disposition, elimination, and safety of (14)C-omacetaxine in patients with solid tumors. Methods The stud...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007276/ https://www.ncbi.nlm.nih.gov/pubmed/27221729 http://dx.doi.org/10.1007/s10637-016-0360-9 |
Sumario: | Background Omacetaxine mepesuccinate is indicated in adults with chronic myeloid leukemia resistant and/or intolerant to ≥ 2 tyrosine kinase inhibitor treatments. This phase I study assessed the disposition, elimination, and safety of (14)C-omacetaxine in patients with solid tumors. Methods The study comprised a 7-days pharmacokinetic assessment followed by a treatment period of ≤ six 28-days cycles. A single subcutaneous dose of 1.25 mg/m(2)(14)C-omacetaxine was administered to six patients. Blood, urine, and feces were collected through 168 h or until radioactivity excreted within 24 h was <1 % of the dose. Total radioactivity (TRA) was measured in all matrices and concentrations of omacetaxine, 4′-desmethylhomoharringtonine (4′-DMHHT), and cephalotaxine were measured in plasma and urine. For each treatment cycle, patients received 1.25 mg/m(2) omacetaxine twice daily for 7 days. Results Mean TRA recovered was approximately 81 % of the dose, with approximately half of the radioactivity recovered in feces and half in urine. Approximately 20 % of the dose was excreted unchanged in urine; cephalotaxine (0.4 % of dose) and 4′ DMHHT (9 %) were also present. Plasma concentrations of TRA were higher than the sum of omacetaxine and known metabolites, suggesting the presence of other (14)C-omacetaxine-derived compounds. Fatigue and anemia were common, consistent with the known toxicity profile of omacetaxine. Conclusion Renal and hepatic processes contribute to the elimination of (14)C-omacetaxine-derived radioactivity in cancer patients. In addition to omacetaxine and its known metabolites, other (14)C-omacetaxine-derived materials appear to be present in plasma and urine. Omacetaxine was adequately tolerated, with no new safety signals. |
---|