Cargando…
Data-Driven User Feedback: An Improved Neurofeedback Strategy considering the Interindividual Variability of EEG Features
It has frequently been reported that some users of conventional neurofeedback systems can experience only a small portion of the total feedback range due to the large interindividual variability of EEG features. In this study, we proposed a data-driven neurofeedback strategy considering the individu...
Autores principales: | Han, Chang-Hee, Lim, Jeong-Hwan, Lee, Jun-Hak, Kim, Kangsan, Im, Chang-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007429/ https://www.ncbi.nlm.nih.gov/pubmed/27631005 http://dx.doi.org/10.1155/2016/3939815 |
Ejemplares similares
-
Prediction of Individual User’s Dynamic Ranges of EEG Features from Resting-State EEG Data for Evaluating Their Suitability for Passive Brain–Computer Interface Applications
por: Cha, Ho-Seung, et al.
Publicado: (2020) -
EEG-based local brain activity feedback training—tomographic neurofeedback
por: Bauer, Herbert, et al.
Publicado: (2014) -
Optimizing microsurgical skills with EEG neurofeedback
por: Ros, Tomas, et al.
Publicado: (2009) -
Neurofeedback strategies in binge-eating disorder as predictors of EEG-neurofeedback regulation success
por: Wimmer, Jytte, et al.
Publicado: (2023) -
Computational EEG analysis: methods and applications
por: Im, Chang-Hwan
Publicado: (2018)