Cargando…
Single Molecule Fluorescence Microscopy and Machine Learning for Rhesus D Antigen Classification
In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The curren...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007495/ https://www.ncbi.nlm.nih.gov/pubmed/27580632 http://dx.doi.org/10.1038/srep32317 |
Sumario: | In transfusion medicine, the identification of the Rhesus D type is important to prevent anti-D immunisation in Rhesus D negative recipients. In particular, the detection of the very low expressed DEL phenotype is crucial and hence constitutes the bottleneck of standard immunohaematology. The current method of choice, adsorption-elution, does not provide unambiguous results. We have developed a complementary method of high sensitivity that allows reliable identification of D antigen expression. Here, we present a workflow composed of high-resolution fluorescence microscopy, image processing, and machine learning that - for the first time - enables the identification of even small amounts of D antigen on the cellular level. The high sensitivity of our technique captures the full range of D antigen expression (including D+, weak D, DEL, D−), allows automated population analyses, and results in classification test accuracies of up to 96%, even for very low expressed phenotypes. |
---|