Cargando…

Distance effects in electrochemical micromachining

Considering exponential dependence of currents on double-layer voltage and the feedback effect of the electrolyte resistance, a distance effect in electrochemical micromachining is found, namely that both time constant and double-layer voltage depend on the separation of electrodes. The double-layer...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Lizhong, Pan, Yue, Zhao, Chuanjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007593/
https://www.ncbi.nlm.nih.gov/pubmed/27581708
http://dx.doi.org/10.1038/srep31778
Descripción
Sumario:Considering exponential dependence of currents on double-layer voltage and the feedback effect of the electrolyte resistance, a distance effect in electrochemical micromachining is found, namely that both time constant and double-layer voltage depend on the separation of electrodes. The double-layer voltage is the real voltage used in processing. Under DC voltage, the apparent voltages between two electrodes are constant for different separations, but the real voltages change with the separations. Small separations exert substantial effects on the real voltages. Accordingly, a DC-voltage small-separation electrochemical micromachining technique was proposed. The double-layer voltage drops sharply as the small separation increases. Thus, the electrochemical reactions are confined to electrode regions in very close proximity even under DC voltage. The machining precision can be significantly enhanced by reducing the voltage and separation between electrodes. With this technique, the machining of conducting materials with submicrometre precision was achieved.