Cargando…
Fine-grained parallelization of fitness functions in bioinformatics optimization problems: gene selection for cancer classification and biclustering of gene expression data
BACKGROUND: Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metah...
Autores principales: | Gomez-Pulido, Juan A., Cerrada-Barrios, Jose L., Trinidad-Amado, Sebastian, Lanza-Gutierrez, Jose M., Fernandez-Diaz, Ramon A., Crawford, Broderick, Soto, Ricardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007680/ https://www.ncbi.nlm.nih.gov/pubmed/27581798 http://dx.doi.org/10.1186/s12859-016-1200-9 |
Ejemplares similares
-
Bayesian biclustering of gene expression data
por: Gu, Jiajun, et al.
Publicado: (2008) -
Quality Measures for Gene Expression Biclusters
por: Pontes, Beatriz, et al.
Publicado: (2015) -
A comparison and evaluation of five biclustering algorithms by quantifying goodness of biclusters for gene expression data
por: Li, Li, et al.
Publicado: (2012) -
Bi-Force: large-scale bicluster editing and its application to gene
expression data biclustering
por: Sun, Peng, et al.
Publicado: (2014) -
Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization
por: Cheng, Kin-On, et al.
Publicado: (2008)