Cargando…

Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients

BACKGROUND: Risk prediction models for colorectal cancer (CRC) detection in symptomatic patients based on available biomarkers may improve CRC diagnosis. Our aim was to develop, compare with the NICE referral criteria and externally validate a CRC prediction model, COLONPREDICT, based on clinical an...

Descripción completa

Detalles Bibliográficos
Autores principales: Cubiella, Joaquín, Vega, Pablo, Salve, María, Díaz-Ondina, Marta, Alves, Maria Teresa, Quintero, Enrique, Álvarez-Sánchez, Victoria, Fernández-Bañares, Fernando, Boadas, Jaume, Campo, Rafel, Bujanda, Luis, Clofent, Joan, Ferrandez, Ángel, Torrealba, Leyanira, Piñol, Virginia, Rodríguez-Alcalde, Daniel, Hernández, Vicent, Fernández-Seara, Javier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007726/
https://www.ncbi.nlm.nih.gov/pubmed/27580745
http://dx.doi.org/10.1186/s12916-016-0668-5
_version_ 1782451262147526656
author Cubiella, Joaquín
Vega, Pablo
Salve, María
Díaz-Ondina, Marta
Alves, Maria Teresa
Quintero, Enrique
Álvarez-Sánchez, Victoria
Fernández-Bañares, Fernando
Boadas, Jaume
Campo, Rafel
Bujanda, Luis
Clofent, Joan
Ferrandez, Ángel
Torrealba, Leyanira
Piñol, Virginia
Rodríguez-Alcalde, Daniel
Hernández, Vicent
Fernández-Seara, Javier
author_facet Cubiella, Joaquín
Vega, Pablo
Salve, María
Díaz-Ondina, Marta
Alves, Maria Teresa
Quintero, Enrique
Álvarez-Sánchez, Victoria
Fernández-Bañares, Fernando
Boadas, Jaume
Campo, Rafel
Bujanda, Luis
Clofent, Joan
Ferrandez, Ángel
Torrealba, Leyanira
Piñol, Virginia
Rodríguez-Alcalde, Daniel
Hernández, Vicent
Fernández-Seara, Javier
author_sort Cubiella, Joaquín
collection PubMed
description BACKGROUND: Risk prediction models for colorectal cancer (CRC) detection in symptomatic patients based on available biomarkers may improve CRC diagnosis. Our aim was to develop, compare with the NICE referral criteria and externally validate a CRC prediction model, COLONPREDICT, based on clinical and laboratory variables. METHODS: This prospective cross-sectional study included consecutive patients with gastrointestinal symptoms referred for colonoscopy between March 2012 and September 2013 in a derivation cohort and between March 2014 and March 2015 in a validation cohort. In the derivation cohort, we assessed symptoms and the NICE referral criteria, and determined levels of faecal haemoglobin and calprotectin, blood haemoglobin, and serum carcinoembryonic antigen before performing an anorectal examination and a colonoscopy. A multivariate logistic regression analysis was used to develop the model with diagnostic accuracy with CRC detection as the main outcome. RESULTS: We included 1572 patients in the derivation cohort and 1481 in the validation cohorts, with a 13.6 % and 9.1 % CRC prevalence respectively. The final prediction model included 11 variables: age (years) (odds ratio [OR] 1.04, 95 % confidence interval [CI] 1.02–1.06), male gender (OR 2.2, 95 % CI 1.5–3.4), faecal haemoglobin ≥20 μg/g (OR 17.0, 95 % CI 10.0–28.6), blood haemoglobin <10 g/dL (OR 4.8, 95 % CI 2.2–10.3), blood haemoglobin 10–12 g/dL (OR 1.8, 95 % CI 1.1–3.0), carcinoembryonic antigen ≥3 ng/mL (OR 4.5, 95 % CI 3.0–6.8), acetylsalicylic acid treatment (OR 0.4, 95 % CI 0.2–0.7), previous colonoscopy (OR 0.1, 95 % CI 0.06–0.2), rectal mass (OR 14.8, 95 % CI 5.3–41.0), benign anorectal lesion (OR 0.3, 95 % CI 0.2–0.4), rectal bleeding (OR 2.2, 95 % CI 1.4–3.4) and change in bowel habit (OR 1.7, 95 % CI 1.1–2.5). The area under the curve (AUC) was 0.92 (95 % CI 0.91–0.94), higher than the NICE referral criteria (AUC 0.59, 95 % CI 0.55–0.63; p < 0.001). On the basis of the thresholds with 90 % (5.6) and 99 % (3.5) sensitivity, we divided the derivation cohort into three risk groups for CRC detection: high (30.9 % of the cohort, positive predictive value [PPV] 40.7 %, 95 % CI 36.7–45.9 %), intermediate (29.5 %, PPV 4.4 %, 95 % CI 2.8–6.8 %) and low (39.5 %, PPV 0.2 %, 95 % CI 0.0–1.1 %). The discriminatory ability was equivalent in the validation cohort (AUC 0.92, 95 % CI 0.90–0.94; p = 0.7). CONCLUSIONS: COLONPREDICT is a highly accurate prediction model for CRC detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-016-0668-5) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5007726
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-50077262016-09-02 Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients Cubiella, Joaquín Vega, Pablo Salve, María Díaz-Ondina, Marta Alves, Maria Teresa Quintero, Enrique Álvarez-Sánchez, Victoria Fernández-Bañares, Fernando Boadas, Jaume Campo, Rafel Bujanda, Luis Clofent, Joan Ferrandez, Ángel Torrealba, Leyanira Piñol, Virginia Rodríguez-Alcalde, Daniel Hernández, Vicent Fernández-Seara, Javier BMC Med Research Article BACKGROUND: Risk prediction models for colorectal cancer (CRC) detection in symptomatic patients based on available biomarkers may improve CRC diagnosis. Our aim was to develop, compare with the NICE referral criteria and externally validate a CRC prediction model, COLONPREDICT, based on clinical and laboratory variables. METHODS: This prospective cross-sectional study included consecutive patients with gastrointestinal symptoms referred for colonoscopy between March 2012 and September 2013 in a derivation cohort and between March 2014 and March 2015 in a validation cohort. In the derivation cohort, we assessed symptoms and the NICE referral criteria, and determined levels of faecal haemoglobin and calprotectin, blood haemoglobin, and serum carcinoembryonic antigen before performing an anorectal examination and a colonoscopy. A multivariate logistic regression analysis was used to develop the model with diagnostic accuracy with CRC detection as the main outcome. RESULTS: We included 1572 patients in the derivation cohort and 1481 in the validation cohorts, with a 13.6 % and 9.1 % CRC prevalence respectively. The final prediction model included 11 variables: age (years) (odds ratio [OR] 1.04, 95 % confidence interval [CI] 1.02–1.06), male gender (OR 2.2, 95 % CI 1.5–3.4), faecal haemoglobin ≥20 μg/g (OR 17.0, 95 % CI 10.0–28.6), blood haemoglobin <10 g/dL (OR 4.8, 95 % CI 2.2–10.3), blood haemoglobin 10–12 g/dL (OR 1.8, 95 % CI 1.1–3.0), carcinoembryonic antigen ≥3 ng/mL (OR 4.5, 95 % CI 3.0–6.8), acetylsalicylic acid treatment (OR 0.4, 95 % CI 0.2–0.7), previous colonoscopy (OR 0.1, 95 % CI 0.06–0.2), rectal mass (OR 14.8, 95 % CI 5.3–41.0), benign anorectal lesion (OR 0.3, 95 % CI 0.2–0.4), rectal bleeding (OR 2.2, 95 % CI 1.4–3.4) and change in bowel habit (OR 1.7, 95 % CI 1.1–2.5). The area under the curve (AUC) was 0.92 (95 % CI 0.91–0.94), higher than the NICE referral criteria (AUC 0.59, 95 % CI 0.55–0.63; p < 0.001). On the basis of the thresholds with 90 % (5.6) and 99 % (3.5) sensitivity, we divided the derivation cohort into three risk groups for CRC detection: high (30.9 % of the cohort, positive predictive value [PPV] 40.7 %, 95 % CI 36.7–45.9 %), intermediate (29.5 %, PPV 4.4 %, 95 % CI 2.8–6.8 %) and low (39.5 %, PPV 0.2 %, 95 % CI 0.0–1.1 %). The discriminatory ability was equivalent in the validation cohort (AUC 0.92, 95 % CI 0.90–0.94; p = 0.7). CONCLUSIONS: COLONPREDICT is a highly accurate prediction model for CRC detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12916-016-0668-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-08-31 /pmc/articles/PMC5007726/ /pubmed/27580745 http://dx.doi.org/10.1186/s12916-016-0668-5 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Cubiella, Joaquín
Vega, Pablo
Salve, María
Díaz-Ondina, Marta
Alves, Maria Teresa
Quintero, Enrique
Álvarez-Sánchez, Victoria
Fernández-Bañares, Fernando
Boadas, Jaume
Campo, Rafel
Bujanda, Luis
Clofent, Joan
Ferrandez, Ángel
Torrealba, Leyanira
Piñol, Virginia
Rodríguez-Alcalde, Daniel
Hernández, Vicent
Fernández-Seara, Javier
Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients
title Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients
title_full Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients
title_fullStr Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients
title_full_unstemmed Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients
title_short Development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients
title_sort development and external validation of a faecal immunochemical test-based prediction model for colorectal cancer detection in symptomatic patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007726/
https://www.ncbi.nlm.nih.gov/pubmed/27580745
http://dx.doi.org/10.1186/s12916-016-0668-5
work_keys_str_mv AT cubiellajoaquin developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT vegapablo developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT salvemaria developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT diazondinamarta developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT alvesmariateresa developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT quinteroenrique developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT alvarezsanchezvictoria developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT fernandezbanaresfernando developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT boadasjaume developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT camporafel developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT bujandaluis developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT clofentjoan developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT ferrandezangel developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT torrealbaleyanira developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT pinolvirginia developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT rodriguezalcaldedaniel developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT hernandezvicent developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT fernandezsearajavier developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients
AT developmentandexternalvalidationofafaecalimmunochemicaltestbasedpredictionmodelforcolorectalcancerdetectioninsymptomaticpatients