Cargando…

Estimation of Response Functions Based on Variational Bayes Algorithm in Dynamic Images Sequences

We proposed a nonparametric Bayesian model based on variational Bayes algorithm to estimate the response functions in dynamic medical imaging. In dynamic renal scintigraphy, the impulse response or retention functions are rather complicated and finding a suitable parametric form is problematic. In t...

Descripción completa

Detalles Bibliográficos
Autor principal: Shan, Bowei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008037/
https://www.ncbi.nlm.nih.gov/pubmed/27631007
http://dx.doi.org/10.1155/2016/4851401
Descripción
Sumario:We proposed a nonparametric Bayesian model based on variational Bayes algorithm to estimate the response functions in dynamic medical imaging. In dynamic renal scintigraphy, the impulse response or retention functions are rather complicated and finding a suitable parametric form is problematic. In this paper, we estimated the response functions using nonparametric Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions were used within hierarchical priors of the variational Bayes algorithm. We performed our algorithm on the real online dataset of dynamic renal scintigraphy. The results demonstrated that this algorithm improved the estimation of response functions with nonparametric priors.