Cargando…

Data on Support Vector Machines (SVM) model to forecast photovoltaic power

The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G...

Descripción completa

Detalles Bibliográficos
Autores principales: Malvoni, M., De Giorgi, M.G., Congedo, P.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008053/
https://www.ncbi.nlm.nih.gov/pubmed/27622206
http://dx.doi.org/10.1016/j.dib.2016.08.024
_version_ 1782451312585080832
author Malvoni, M.
De Giorgi, M.G.
Congedo, P.M.
author_facet Malvoni, M.
De Giorgi, M.G.
Congedo, P.M.
author_sort Malvoni, M.
collection PubMed
description The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.
format Online
Article
Text
id pubmed-5008053
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-50080532016-09-12 Data on Support Vector Machines (SVM) model to forecast photovoltaic power Malvoni, M. De Giorgi, M.G. Congedo, P.M. Data Brief Data Article The data concern the photovoltaic (PV) power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015) [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA) are applied to the Least Squares Support Vector Machines (LS-SVM) to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material. Elsevier 2016-08-18 /pmc/articles/PMC5008053/ /pubmed/27622206 http://dx.doi.org/10.1016/j.dib.2016.08.024 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Malvoni, M.
De Giorgi, M.G.
Congedo, P.M.
Data on Support Vector Machines (SVM) model to forecast photovoltaic power
title Data on Support Vector Machines (SVM) model to forecast photovoltaic power
title_full Data on Support Vector Machines (SVM) model to forecast photovoltaic power
title_fullStr Data on Support Vector Machines (SVM) model to forecast photovoltaic power
title_full_unstemmed Data on Support Vector Machines (SVM) model to forecast photovoltaic power
title_short Data on Support Vector Machines (SVM) model to forecast photovoltaic power
title_sort data on support vector machines (svm) model to forecast photovoltaic power
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008053/
https://www.ncbi.nlm.nih.gov/pubmed/27622206
http://dx.doi.org/10.1016/j.dib.2016.08.024
work_keys_str_mv AT malvonim dataonsupportvectormachinessvmmodeltoforecastphotovoltaicpower
AT degiorgimg dataonsupportvectormachinessvmmodeltoforecastphotovoltaicpower
AT congedopm dataonsupportvectormachinessvmmodeltoforecastphotovoltaicpower