Cargando…
A scoring system based on artificial neural network for predicting 10-year survival in stage II A colon cancer patients after radical surgery
Nearly 20% patients with stage II A colon cancer will develop recurrent disease post-operatively. The present study aims to develop a scoring system based on Artificial Neural Network (ANN) model for predicting 10-year survival outcome. The clinical and molecular data of 117 stage II A colon cancer...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008413/ https://www.ncbi.nlm.nih.gov/pubmed/27008710 http://dx.doi.org/10.18632/oncotarget.8217 |
Sumario: | Nearly 20% patients with stage II A colon cancer will develop recurrent disease post-operatively. The present study aims to develop a scoring system based on Artificial Neural Network (ANN) model for predicting 10-year survival outcome. The clinical and molecular data of 117 stage II A colon cancer patients from Sun Yat-sen University Cancer Center were used for training set and test set; poor pathological grading (score 49), reduced expression of TGFBR2 (score 33), over-expression of TGF-β (score 45), MAPK (score 32), pin1 (score 100), β-catenin in tumor tissue (score 50) and reduced expression of TGF-β in normal mucosa (score 22) were selected as the prognostic risk predictors. According to the developed scoring system, the patients were divided into 3 subgroups, which were supposed with higher, moderate and lower risk levels. As a result, for the 3 subgroups, the 10-year overall survival (OS) rates were 16.7%, 62.9% and 100% (P < 0.001); and the 10-year disease free survival (DFS) rates were 16.7%, 61.8% and 98.8% (P < 0.001) respectively. It showed that this scoring system for stage II A colon cancer could help to predict long-term survival and screen out high-risk individuals for more vigorous treatment. |
---|