Cargando…
CONSORT: Sam68 Is Directly Regulated by MiR-204 and Promotes the Self-Renewal Potential of Breast Cancer Cells by Activating the Wnt/Beta-Catenin Signaling Pathway
Breast cancer stem cells (BCSCs) are considered to be responsible for recurrence in breast cancer. The 68 kDa Src-associated protein in mitosis (Sam68) has been linked to the development and progression of breast cancer; however, the posttranscriptional regulation and role of Sam68 in BCSC self-rene...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008509/ https://www.ncbi.nlm.nih.gov/pubmed/26656364 http://dx.doi.org/10.1097/MD.0000000000002228 |
Sumario: | Breast cancer stem cells (BCSCs) are considered to be responsible for recurrence in breast cancer. The 68 kDa Src-associated protein in mitosis (Sam68) has been linked to the development and progression of breast cancer; however, the posttranscriptional regulation and role of Sam68 in BCSC self-renewal remain unclear. Sam68 was ectopically overexpressed or knocked down using a siRNA; the self-renewal potential of breast cancer cell lines was assessed using flow cytometry, in vitro mammosphere culture and a xenograft model in NOD/SCID mice. Activation of beta-catenin was assessed by immunohistochemical staining, Western blotting, and luciferase reporter gene assays. The ArrayExpress dataset GSE45666 was used to identify conserved microRNAs downregulated in breast cancer; real-time PCR, Western blotting, luciferase reporter assay, and xenografted tumor model were used to confirm miR-204 regulated Sam68. We found that endogenous Sam68 expression correlated positively with the self-renewal potential of breast cancer cell lines. Overexpression of Sam68 promoted, whereas knockdown reduced, breast cancer cell self-renewal potential in vitro and tumorigenicity in vivo. The Wnt/beta-catenin pathway was identified as a functional mediator of Sam68-induced self-renewal in SKBR-3 and MCF-7 cells. Furthermore, miR-204 was found to be frequently downregulated in human breast cancer and confirmed to directly target Sam68; miR-204 inhibited the self-renewal of breast cancer cell lines by targeting and suppressing Sam68. Our study reveals that Sam68 is regulated by miR-204 and may play an important role in the self-renewal of BCSCs via activating the Wnt/beta-catenin pathway. Sam68 may represent a novel therapeutic target for breast cancer. |
---|