Cargando…

Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials

We introduce a composite optical lattice created by two mutually rotated square patterns and allowing observation of continuous transformation between incommensurate and completely periodic structures upon variation of the rotation angle θ. Such lattices acquire periodicity only for rotation angles...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Changming, Ye, Fangwei, Chen, Xianfeng, Kartashov, Yaroslav V., Konotop, Vladimir V., Torner, Lluis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009312/
https://www.ncbi.nlm.nih.gov/pubmed/27586011
http://dx.doi.org/10.1038/srep32546
_version_ 1782451502129872896
author Huang, Changming
Ye, Fangwei
Chen, Xianfeng
Kartashov, Yaroslav V.
Konotop, Vladimir V.
Torner, Lluis
author_facet Huang, Changming
Ye, Fangwei
Chen, Xianfeng
Kartashov, Yaroslav V.
Konotop, Vladimir V.
Torner, Lluis
author_sort Huang, Changming
collection PubMed
description We introduce a composite optical lattice created by two mutually rotated square patterns and allowing observation of continuous transformation between incommensurate and completely periodic structures upon variation of the rotation angle θ. Such lattices acquire periodicity only for rotation angles cos θ = a/c, sin θ = b/c, set by Pythagorean triples of natural numbers (a, b, c). While linear eigenmodes supported by lattices associated with Pythagorean triples are always extended, composite patterns generated for intermediate rotation angles allow observation of the localization-delocalization transition of eigenmodes upon modification of the relative strength of two sublattices forming the composite pattern. Sharp delocalization of supported modes for certain θ values can be used for visualization of Pythagorean triples. The effects predicted here are general and also take place in composite structures generated by two rotated hexagonal lattices.
format Online
Article
Text
id pubmed-5009312
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50093122016-09-08 Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials Huang, Changming Ye, Fangwei Chen, Xianfeng Kartashov, Yaroslav V. Konotop, Vladimir V. Torner, Lluis Sci Rep Article We introduce a composite optical lattice created by two mutually rotated square patterns and allowing observation of continuous transformation between incommensurate and completely periodic structures upon variation of the rotation angle θ. Such lattices acquire periodicity only for rotation angles cos θ = a/c, sin θ = b/c, set by Pythagorean triples of natural numbers (a, b, c). While linear eigenmodes supported by lattices associated with Pythagorean triples are always extended, composite patterns generated for intermediate rotation angles allow observation of the localization-delocalization transition of eigenmodes upon modification of the relative strength of two sublattices forming the composite pattern. Sharp delocalization of supported modes for certain θ values can be used for visualization of Pythagorean triples. The effects predicted here are general and also take place in composite structures generated by two rotated hexagonal lattices. Nature Publishing Group 2016-09-02 /pmc/articles/PMC5009312/ /pubmed/27586011 http://dx.doi.org/10.1038/srep32546 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Huang, Changming
Ye, Fangwei
Chen, Xianfeng
Kartashov, Yaroslav V.
Konotop, Vladimir V.
Torner, Lluis
Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
title Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
title_full Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
title_fullStr Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
title_full_unstemmed Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
title_short Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials
title_sort localization-delocalization wavepacket transition in pythagorean aperiodic potentials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009312/
https://www.ncbi.nlm.nih.gov/pubmed/27586011
http://dx.doi.org/10.1038/srep32546
work_keys_str_mv AT huangchangming localizationdelocalizationwavepackettransitioninpythagoreanaperiodicpotentials
AT yefangwei localizationdelocalizationwavepackettransitioninpythagoreanaperiodicpotentials
AT chenxianfeng localizationdelocalizationwavepackettransitioninpythagoreanaperiodicpotentials
AT kartashovyaroslavv localizationdelocalizationwavepackettransitioninpythagoreanaperiodicpotentials
AT konotopvladimirv localizationdelocalizationwavepackettransitioninpythagoreanaperiodicpotentials
AT tornerlluis localizationdelocalizationwavepackettransitioninpythagoreanaperiodicpotentials