Cargando…
The effect of electric field intensification at interparticle contacts in microwave sintering
The nature of microwave sintering cannot be explained in the past and has been generally called microwave effect. Here we show that the E-field intensification is the reason of microwave fast sintering of solid state inorganic compounds. The intensification degree varied with dielectric constant of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009377/ https://www.ncbi.nlm.nih.gov/pubmed/27586521 http://dx.doi.org/10.1038/srep32163 |
Sumario: | The nature of microwave sintering cannot be explained in the past and has been generally called microwave effect. Here we show that the E-field intensification is the reason of microwave fast sintering of solid state inorganic compounds. The intensification degree varied with dielectric constant of compound, distance between two particles, angle between the direction of E-field and the normal to the surface at the adjacent point of two spheres. Ultra-high temperature caused by E-field intensification leads to fusing of solid materials at contact zone and enhances the mass transportation. The key to develop a microwave energy-saved sintering method is to control the distance between particles and uniformity of particles instead of the particle size. |
---|