Cargando…
Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature
BACKGROUND: Information about drug–drug interactions (DDIs) supported by scientific evidence is crucial for establishing computational knowledge bases for applications like pharmacovigilance. Since new reports of DDIs are rapidly accumulating in the scientific literature, text-mining techniques for...
Autores principales: | Zhang, Yaoyun, Wu, Heng-Yi, Xu, Jun, Wang, Jingqi, Soysal, Ergin, Li, Lang, Xu, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009562/ https://www.ncbi.nlm.nih.gov/pubmed/27585838 http://dx.doi.org/10.1186/s12918-016-0311-2 |
Ejemplares similares
-
Extracting drug-enzyme relation from literature as evidence for drug drug interaction
por: Zhang, Yaoyun, et al.
Publicado: (2016) -
Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction
por: Zhang, Yaoyun, et al.
Publicado: (2015) -
Erratum to: Extracting drug-enzyme relation from literature as evidence for drug drug interaction
por: Zhang, Yaoyun, et al.
Publicado: (2016) -
Exploiting graph kernels for high performance biomedical relation extraction
por: Panyam, Nagesh C., et al.
Publicado: (2018) -
Temporal Relation Extraction with Joint Semantic and Syntactic Attention
por: Jin, Panpan, et al.
Publicado: (2022)