Cargando…
A Bregman-proximal point algorithm for robust non-negative matrix factorization with possible missing values and outliers - application to gene expression analysis
BACKGROUND: Non-Negative Matrix factorization has become an essential tool for feature extraction in a wide spectrum of applications. In the present work, our objective is to extend the applicability of the method to the case of missing and/or corrupted data due to outliers. RESULTS: An essential pr...
Autores principales: | Chrétien, Stéphane, Guyeux, Christophe, Conesa, Bastien, Delage-Mouroux, Régis, Jouvenot, Michèle, Huetz, Philippe, Descôtes, Françoise |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009666/ https://www.ncbi.nlm.nih.gov/pubmed/27585655 http://dx.doi.org/10.1186/s12859-016-1120-8 |
Ejemplares similares
-
Wireless Sensor Network Localization via Matrix Completion Based on Bregman Divergence
por: Liu, Chunsheng, et al.
Publicado: (2018) -
Robust Acoustic Imaging Based on Bregman Iteration and Fast Iterative Shrinkage-Thresholding Algorithm
por: Huang, Linsen, et al.
Publicado: (2020) -
Upper and lower bounds for the Bregman divergence
por: Sprung, Benjamin
Publicado: (2019) -
Block-Active ADMM to Minimize NMF with Bregman Divergences
por: Li, Xinyao, et al.
Publicado: (2023) -
Epigenetic regulation of estrogen signaling in breast cancer
por: Hervouet, Eric, et al.
Publicado: (2013)