Cargando…
Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment
BACKGROUND: The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009682/ https://www.ncbi.nlm.nih.gov/pubmed/27586387 http://dx.doi.org/10.1186/s12862-016-0751-8 |
_version_ | 1782451559915847680 |
---|---|
author | Hablützel, Pascal I. Brown, Martha Friberg, Ida M. Jackson, Joseph A. |
author_facet | Hablützel, Pascal I. Brown, Martha Friberg, Ida M. Jackson, Joseph A. |
author_sort | Hablützel, Pascal I. |
collection | PubMed |
description | BACKGROUND: The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. RESULTS: We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. CONCLUSION: Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-016-0751-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5009682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-50096822016-09-03 Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment Hablützel, Pascal I. Brown, Martha Friberg, Ida M. Jackson, Joseph A. BMC Evol Biol Research Article BACKGROUND: The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. RESULTS: We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. CONCLUSION: Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-016-0751-8) contains supplementary material, which is available to authorized users. BioMed Central 2016-09-01 /pmc/articles/PMC5009682/ /pubmed/27586387 http://dx.doi.org/10.1186/s12862-016-0751-8 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Hablützel, Pascal I. Brown, Martha Friberg, Ida M. Jackson, Joseph A. Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment |
title | Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment |
title_full | Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment |
title_fullStr | Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment |
title_full_unstemmed | Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment |
title_short | Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment |
title_sort | changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009682/ https://www.ncbi.nlm.nih.gov/pubmed/27586387 http://dx.doi.org/10.1186/s12862-016-0751-8 |
work_keys_str_mv | AT hablutzelpascali changingexpressionofvertebrateimmunitygenesinananthropogenicenvironmentacontrolledexperiment AT brownmartha changingexpressionofvertebrateimmunitygenesinananthropogenicenvironmentacontrolledexperiment AT fribergidam changingexpressionofvertebrateimmunitygenesinananthropogenicenvironmentacontrolledexperiment AT jacksonjosepha changingexpressionofvertebrateimmunitygenesinananthropogenicenvironmentacontrolledexperiment |