Cargando…

The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers

Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance com...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Michelle L., Jackson, Ryan N., Denny, Steven R., Tokmina-Lukaszewska, Monika, Maksimchuk, Kenneth R., Lin, Wayne, Bothner, Brian, Wiedenheft, Blake, Beisel, Chase L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009729/
https://www.ncbi.nlm.nih.gov/pubmed/27174938
http://dx.doi.org/10.1093/nar/gkw421
_version_ 1782451570814746624
author Luo, Michelle L.
Jackson, Ryan N.
Denny, Steven R.
Tokmina-Lukaszewska, Monika
Maksimchuk, Kenneth R.
Lin, Wayne
Bothner, Brian
Wiedenheft, Blake
Beisel, Chase L.
author_facet Luo, Michelle L.
Jackson, Ryan N.
Denny, Steven R.
Tokmina-Lukaszewska, Monika
Maksimchuk, Kenneth R.
Lin, Wayne
Bothner, Brian
Wiedenheft, Blake
Beisel, Chase L.
author_sort Luo, Michelle L.
collection PubMed
description Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of this complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Finally, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity.
format Online
Article
Text
id pubmed-5009729
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-50097292016-09-07 The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers Luo, Michelle L. Jackson, Ryan N. Denny, Steven R. Tokmina-Lukaszewska, Monika Maksimchuk, Kenneth R. Lin, Wayne Bothner, Brian Wiedenheft, Blake Beisel, Chase L. Nucleic Acids Res RNA Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of this complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Finally, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity. Oxford University Press 2016-09-06 2016-05-12 /pmc/articles/PMC5009729/ /pubmed/27174938 http://dx.doi.org/10.1093/nar/gkw421 Text en © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle RNA
Luo, Michelle L.
Jackson, Ryan N.
Denny, Steven R.
Tokmina-Lukaszewska, Monika
Maksimchuk, Kenneth R.
Lin, Wayne
Bothner, Brian
Wiedenheft, Blake
Beisel, Chase L.
The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
title The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
title_full The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
title_fullStr The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
title_full_unstemmed The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
title_short The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
title_sort crispr rna-guided surveillance complex in escherichia coli accommodates extended rna spacers
topic RNA
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009729/
https://www.ncbi.nlm.nih.gov/pubmed/27174938
http://dx.doi.org/10.1093/nar/gkw421
work_keys_str_mv AT luomichellel thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT jacksonryann thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT dennystevenr thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT tokminalukaszewskamonika thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT maksimchukkennethr thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT linwayne thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT bothnerbrian thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT wiedenheftblake thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT beiselchasel thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT luomichellel crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT jacksonryann crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT dennystevenr crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT tokminalukaszewskamonika crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT maksimchukkennethr crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT linwayne crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT bothnerbrian crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT wiedenheftblake crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers
AT beiselchasel crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers