Cargando…
The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers
Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance com...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009729/ https://www.ncbi.nlm.nih.gov/pubmed/27174938 http://dx.doi.org/10.1093/nar/gkw421 |
_version_ | 1782451570814746624 |
---|---|
author | Luo, Michelle L. Jackson, Ryan N. Denny, Steven R. Tokmina-Lukaszewska, Monika Maksimchuk, Kenneth R. Lin, Wayne Bothner, Brian Wiedenheft, Blake Beisel, Chase L. |
author_facet | Luo, Michelle L. Jackson, Ryan N. Denny, Steven R. Tokmina-Lukaszewska, Monika Maksimchuk, Kenneth R. Lin, Wayne Bothner, Brian Wiedenheft, Blake Beisel, Chase L. |
author_sort | Luo, Michelle L. |
collection | PubMed |
description | Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of this complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Finally, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity. |
format | Online Article Text |
id | pubmed-5009729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-50097292016-09-07 The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers Luo, Michelle L. Jackson, Ryan N. Denny, Steven R. Tokmina-Lukaszewska, Monika Maksimchuk, Kenneth R. Lin, Wayne Bothner, Brian Wiedenheft, Blake Beisel, Chase L. Nucleic Acids Res RNA Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of this complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Finally, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity. Oxford University Press 2016-09-06 2016-05-12 /pmc/articles/PMC5009729/ /pubmed/27174938 http://dx.doi.org/10.1093/nar/gkw421 Text en © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | RNA Luo, Michelle L. Jackson, Ryan N. Denny, Steven R. Tokmina-Lukaszewska, Monika Maksimchuk, Kenneth R. Lin, Wayne Bothner, Brian Wiedenheft, Blake Beisel, Chase L. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers |
title | The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers |
title_full | The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers |
title_fullStr | The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers |
title_full_unstemmed | The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers |
title_short | The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers |
title_sort | crispr rna-guided surveillance complex in escherichia coli accommodates extended rna spacers |
topic | RNA |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009729/ https://www.ncbi.nlm.nih.gov/pubmed/27174938 http://dx.doi.org/10.1093/nar/gkw421 |
work_keys_str_mv | AT luomichellel thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT jacksonryann thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT dennystevenr thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT tokminalukaszewskamonika thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT maksimchukkennethr thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT linwayne thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT bothnerbrian thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT wiedenheftblake thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT beiselchasel thecrisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT luomichellel crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT jacksonryann crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT dennystevenr crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT tokminalukaszewskamonika crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT maksimchukkennethr crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT linwayne crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT bothnerbrian crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT wiedenheftblake crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers AT beiselchasel crisprrnaguidedsurveillancecomplexinescherichiacoliaccommodatesextendedrnaspacers |