Cargando…
Classification of breast cancer patients using somatic mutation profiles and machine learning approaches
BACKGROUND: The high degree of heterogeneity observed in breast cancers makes it very difficult to classify the cancer patients into distinct clinical subgroups and consequently limits the ability to devise effective therapeutic strategies. Several classification strategies based on ER/PR/HER2 expre...
Autores principales: | Vural, Suleyman, Wang, Xiaosheng, Guda, Chittibabu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009820/ https://www.ncbi.nlm.nih.gov/pubmed/27587275 http://dx.doi.org/10.1186/s12918-016-0306-z |
Ejemplares similares
-
Exome Analysis Reveals Differentially Mutated Gene Signatures of Stage, Grade and Subtype in Breast Cancers
por: Li, You, et al.
Publicado: (2015) -
Integrative exploration of genomic profiles for triple negative breast cancer identifies potential drug targets
por: Wang, Xiaosheng, et al.
Publicado: (2016) -
Mining for class-specific motifs in protein sequence classification
por: Srinivasan, Satish M, et al.
Publicado: (2013) -
Classification of Cancer Primary Sites Using Machine Learning and Somatic Mutations
por: Chen, Yukun, et al.
Publicado: (2015) -
Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks
por: Shen, Ru, et al.
Publicado: (2015)