Cargando…
Structured sparse CCA for brain imaging genetics via graph OSCAR
BACKGROUND: Recently, structured sparse canonical correlation analysis (SCCA) has received increased attention in brain imaging genetics studies. It can identify bi-multivariate imaging genetic associations as well as select relevant features with desired structure information. These SCCA methods ei...
Autores principales: | Du, Lei, Huang, Heng, Yan, Jingwen, Kim, Sungeun, Risacher, Shannon, Inlow, Mark, Moore, Jason, Saykin, Andrew, Shen, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009827/ https://www.ncbi.nlm.nih.gov/pubmed/27585988 http://dx.doi.org/10.1186/s12918-016-0312-1 |
Ejemplares similares
-
Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm
por: Yan, Jingwen, et al.
Publicado: (2014) -
Two-dimensional enrichment analysis for mining high-level imaging genetic associations
por: Yao, Xiaohui, et al.
Publicado: (2016) -
Mining Outcome-relevant Brain Imaging Genetic Associations via Three-way Sparse Canonical Correlation Analysis in Alzheimer’s Disease
por: Hao, Xiaoke, et al.
Publicado: (2017) -
Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
por: Wang, Hua, et al.
Publicado: (2012) -
Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort
por: Du, Lei, et al.
Publicado: (2019)