Cargando…
The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia
Clostridium difficile is the most common hospital acquired pathogen in the United States, and infection is in many cases fatal. Toxins A and B are its major virulence factors, but increasingly a third toxin may be present, known as C. difficile transferase (CDT). An ADP-ribosyltransferase that cause...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010011/ https://www.ncbi.nlm.nih.gov/pubmed/27573114 http://dx.doi.org/10.1038/nmicrobiol.2016.108 |
Sumario: | Clostridium difficile is the most common hospital acquired pathogen in the United States, and infection is in many cases fatal. Toxins A and B are its major virulence factors, but increasingly a third toxin may be present, known as C. difficile transferase (CDT). An ADP-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. Here we show that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a Toll-like Receptor 2 (TLR2) dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, we show that restoration of TLR2 deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C. difficile and demonstrate a mechanism by which this binary toxin subverts the host immune response. |
---|