Cargando…

Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.)

A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety ‘Yumechikara’ with a high protein content used for bread making, and the sof...

Descripción completa

Detalles Bibliográficos
Autores principales: Terasawa, Yohei, Ito, Miwako, Tabiki, Tadashi, Nagasawa, Koichi, Hatta, Koichi, Nishio, Zenta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Breeding 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010309/
https://www.ncbi.nlm.nih.gov/pubmed/27795672
http://dx.doi.org/10.1270/jsbbs.16026
Descripción
Sumario:A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety ‘Yumechikara’ with a high protein content used for bread making, and the soft red winter wheat ‘Kitahonami’ with a low protein content used for Japanese white salted noodles. A single major QTL, QGpc.2B-yume, was identified on the short arm of wheat chromosome 2B for both the GPC and FPC over 3 years of testing. QGpc.2B-yume was mapped on the flanking region of microsatellite marker Xgpw4382. The DH lines grouped by the haplotype of the closest flanking microsatellite marker Xgpw4382 showed differences of 1.0% and 1.1% in mean GPC and FPC, respectively. Yield-component-related traits were not affected by the haplotype of QGpc.2B-yume, and major North American hard red winter wheat varieties showed the high-protein haplotype. Unlike Gpc-B1 derived from tetraploid wheat, QGpc.2B-yume has no negative effects on yield-component-related traits and should be useful for wheat breeding to increase GPC and FPC.