Cargando…

Biodegradation of isoproturon by Pseudoxanthomonas sp. isolated from herbicide-treated wheat fields of Tarai agro-ecosystem, Pantnagar

A gram-negative, rod-shaped, isoproturon (IPU) utilizing bacterium was isolated from herbicide-applied wheat fields of Tarai agro-ecosystem, Pantnagar. The phylogenetic sequence analysis based on 16S rRNA sequence revealed that the isolate could be a distinct species within the genus Pseudomonas. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Giri, Krishna, Pandey, Shailseh, Kumar, Rajesh, Rai, J. P. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010538/
https://www.ncbi.nlm.nih.gov/pubmed/28330262
http://dx.doi.org/10.1007/s13205-016-0505-8
Descripción
Sumario:A gram-negative, rod-shaped, isoproturon (IPU) utilizing bacterium was isolated from herbicide-applied wheat fields of Tarai agro-ecosystem, Pantnagar. The phylogenetic sequence analysis based on 16S rRNA sequence revealed that the isolate could be a distinct species within the genus Pseudomonas. The isolate was a close relative of Pseudoxanthomonas japonensis (95 % similarity) and designated as K2. The bacterial isolate showed positive reaction for oxidase, catalase, and 20 carbohydrates using KB009 Part A and B HiCarbohydrate™ Kit. Degradation experiments were conducted using 200 mg l(−1) initial IPU as a source of carbon at different pH and temperatures. Maximum IPU degradation by K2 was observed at pH 7.0 and 30 °C, while least degradation at 6.5 pH and 25 °C. Addition of dextrose along with IPU as an auxiliary carbon source increased IPU degradation by 4.72 %, as compared to the IPU degradation without dextrose under optimum conditions. 4-isopropylaniline was detected as a degradation by-product in the medium. The present study demonstrated the IPU metabolizing capacity of a novel bacterial isolate K2 that can be a better choice for the remediation of IPU-contaminated sites.