Cargando…
Improved CEEMDAN and PSO-SVR Modeling for Near-Infrared Noninvasive Glucose Detection
Diabetes is a serious threat to human health. Thus, research on noninvasive blood glucose detection has become crucial locally and abroad. Near-infrared transmission spectroscopy has important applications in noninvasive glucose detection. Extracting useful information and selecting appropriate mode...
Autores principales: | Li, Xiaoli, Li, Chengwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011244/ https://www.ncbi.nlm.nih.gov/pubmed/27635151 http://dx.doi.org/10.1155/2016/8301962 |
Ejemplares similares
-
Improved CEEMDAN, GA, and SVR Model for Oil Price Forecasting
por: Lu, Yichun, et al.
Publicado: (2022) -
Retracted: Improved CEEMDAN, GA, and SVR Model for Oil Price Forecasting
por: Environmental and Public Health, Journal of
Publicado: (2023) -
In vivo noninvasive blood glucose detection using near-infrared spectrum based on the PSO-2ANN model
por: Dai, Juan, et al.
Publicado: (2018) -
Prediction of protein solvent accessibility using PSO-SVR with multiple sequence-derived features and weighted sliding window scheme
por: Zhang, Jian, et al.
Publicado: (2015) -
Concordance of SVR12, SVR24 and SVR durability in Taiwanese chronic hepatitis C patients with direct-acting antivirals
por: Lin, Chuan-Pin, et al.
Publicado: (2021)