Cargando…
EEG-Based BCI System Using Adaptive Features Extraction and Classification Procedures
Motor imagery is a common control strategy in EEG-based brain-computer interfaces (BCIs). However, voluntary control of sensorimotor (SMR) rhythms by imagining a movement can be skilful and unintuitive and usually requires a varying amount of user training. To boost the training process, a whole cla...
Autores principales: | Mondini, Valeria, Mangia, Anna Lisa, Cappello, Angelo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011245/ https://www.ncbi.nlm.nih.gov/pubmed/27635129 http://dx.doi.org/10.1155/2016/4562601 |
Ejemplares similares
-
Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm
por: Mondini, Valeria, et al.
Publicado: (2018) -
Sinc-Windowing and Multiple Correlation Coefficients Improve SSVEP Recognition Based on Canonical Correlation Analysis
por: Mondini, Valeria, et al.
Publicado: (2018) -
A Feasibility Study of an Improved Procedure for Using EEG to Detect Brain Responses to Imagery Instruction in Patients with Disorders of Consciousness
por: Mangia, Anna Lisa, et al.
Publicado: (2014) -
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
Enhanced Performance by Time-Frequency-Phase Feature for EEG-Based BCI Systems
por: Xu, Baolei, et al.
Publicado: (2014)