Cargando…

Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation

PURPOSE: Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent s...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Juhyun, Oh, Yumi, Kim, Jong Youl, Cho, Kyoung Joo, Lee, Jong Eun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Yonsei University College of Medicine 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011279/
https://www.ncbi.nlm.nih.gov/pubmed/27593875
http://dx.doi.org/10.3349/ymj.2016.57.6.1461
Descripción
Sumario:PURPOSE: Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. MATERIALS AND METHODS: This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. RESULTS: Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. CONCLUSION: Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders.