Cargando…
Functional networks inference from rule-based machine learning models
BACKGROUND: Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most p...
Autores principales: | Lazzarini, Nicola, Widera, Paweł, Williamson, Stuart, Heer, Rakesh, Krasnogor, Natalio, Bacardit, Jaume |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011349/ https://www.ncbi.nlm.nih.gov/pubmed/27597880 http://dx.doi.org/10.1186/s13040-016-0106-4 |
Ejemplares similares
-
Using Rule-Based Machine Learning for Candidate Disease Gene Prioritization and Sample Classification of Cancer Gene Expression Data
por: Glaab, Enrico, et al.
Publicado: (2012) -
RGIFE: a ranked guided iterative feature elimination heuristic for the identification of biomarkers
por: Lazzarini, Nicola, et al.
Publicado: (2017) -
JEPETTO: a Cytoscape plugin for gene set enrichment and topological analysis based on interaction networks
por: Winterhalter, Charles, et al.
Publicado: (2014) -
Extending pathways and processes using molecular interaction networks to analyse cancer genome data
por: Glaab, Enrico, et al.
Publicado: (2010) -
Identification of CNGB1 as a Predictor of Response to Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer
por: Hepburn, Anastasia C., et al.
Publicado: (2021)