Cargando…
Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings
[Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Society of Physical Therapy Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011586/ https://www.ncbi.nlm.nih.gov/pubmed/27630422 http://dx.doi.org/10.1589/jpts.28.2316 |
_version_ | 1782451855141371904 |
---|---|
author | Aizawa, Junya Ohji, Shunsuke Koga, Hideyuki Masuda, Tadashi Yagishita, Kazuyoshi |
author_facet | Aizawa, Junya Ohji, Shunsuke Koga, Hideyuki Masuda, Tadashi Yagishita, Kazuyoshi |
author_sort | Aizawa, Junya |
collection | PubMed |
description | [Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing. |
format | Online Article Text |
id | pubmed-5011586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | The Society of Physical Therapy Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50115862016-09-14 Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings Aizawa, Junya Ohji, Shunsuke Koga, Hideyuki Masuda, Tadashi Yagishita, Kazuyoshi J Phys Ther Sci Original Article [Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing. The Society of Physical Therapy Science 2016-08-31 2016-08 /pmc/articles/PMC5011586/ /pubmed/27630422 http://dx.doi.org/10.1589/jpts.28.2316 Text en 2016©by the Society of Physical Therapy Science. Published by IPEC Inc. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. |
spellingShingle | Original Article Aizawa, Junya Ohji, Shunsuke Koga, Hideyuki Masuda, Tadashi Yagishita, Kazuyoshi Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings |
title | Correlations between sagittal plane kinematics and landing impact force
during single-leg lateral jump-landings |
title_full | Correlations between sagittal plane kinematics and landing impact force
during single-leg lateral jump-landings |
title_fullStr | Correlations between sagittal plane kinematics and landing impact force
during single-leg lateral jump-landings |
title_full_unstemmed | Correlations between sagittal plane kinematics and landing impact force
during single-leg lateral jump-landings |
title_short | Correlations between sagittal plane kinematics and landing impact force
during single-leg lateral jump-landings |
title_sort | correlations between sagittal plane kinematics and landing impact force
during single-leg lateral jump-landings |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011586/ https://www.ncbi.nlm.nih.gov/pubmed/27630422 http://dx.doi.org/10.1589/jpts.28.2316 |
work_keys_str_mv | AT aizawajunya correlationsbetweensagittalplanekinematicsandlandingimpactforceduringsingleleglateraljumplandings AT ohjishunsuke correlationsbetweensagittalplanekinematicsandlandingimpactforceduringsingleleglateraljumplandings AT kogahideyuki correlationsbetweensagittalplanekinematicsandlandingimpactforceduringsingleleglateraljumplandings AT masudatadashi correlationsbetweensagittalplanekinematicsandlandingimpactforceduringsingleleglateraljumplandings AT yagishitakazuyoshi correlationsbetweensagittalplanekinematicsandlandingimpactforceduringsingleleglateraljumplandings |