Cargando…

Effect of home-based training using a slant board with dorsiflexed ankles on walking function in post-stroke hemiparetic patients

[Purpose] To investigate the effects of a 30-day rehabilitation program using a slant board on walking function in post-stroke hemiparetic patients. [Subjects and Methods] Six hemiparetic patients with gait disturbance were studied. The patients were instructed to perform a home-based rehabilitation...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakayama, Yasuhide, Iijima, Setsu, Kakuda, Wataru, Abo, Masahiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Society of Physical Therapy Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011595/
https://www.ncbi.nlm.nih.gov/pubmed/27630431
http://dx.doi.org/10.1589/jpts.28.2353
Descripción
Sumario:[Purpose] To investigate the effects of a 30-day rehabilitation program using a slant board on walking function in post-stroke hemiparetic patients. [Subjects and Methods] Six hemiparetic patients with gait disturbance were studied. The patients were instructed to perform a home-based rehabilitation program using a slant board, thrice daily for 30 days, the exercise included standing on the slant board for 3 minutes, with both ankles dorsiflexed without backrest. For all patients, the Brunnstrom Recovery Stage, Barthel Index, range of motion of the ankle joint, modified Ashworth scale scole for calf muscle, sensory impairments with Numeral Rating Scale, maximum walking speed, number of steps, and Timed “Up and Go” test were serially evaluated at the beginning and end of the 30-day program. [Results] The program significantly increased walking velocity, decreased the number of steps in the 10-m walking test, and decreased Timed “Up and Go” test performance time. [Conclusion] This rehabilitation program using the slant board was safe and improved walking function in patients. The improvement in walking function could be due to a forward shift of the center of gravity, which can be an important part of motor learning for gait improvement.