Cargando…
Exactly solvable spin chain models corresponding to BDI class of topological superconductors
We present an exactly solvable extension of the quantum XY chain with longer range multi-spin interactions. Topological phase transitions of the model are classified in terms of the number of Majorana zero modes, n(M) which are in turn related to an integer winding number, n(W). The present class of...
Autores principales: | Jafari, S. A., Shahbazi, Farhad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011742/ https://www.ncbi.nlm.nih.gov/pubmed/27596804 http://dx.doi.org/10.1038/srep32720 |
Ejemplares similares
-
Corrigendum: Exactly solvable spin chain models corresponding to BDI class of topological superconductors
por: Jafari, S. A., et al.
Publicado: (2016) -
Quasi-exactly solvable models in quantum mechanics
por: Ushveridze, A G
Publicado: (1994) -
Superradiant Quantum Phase Transition for an Exactly Solvable Two-Qubit Spin-Boson Model
por: Grimaudo, Roberto, et al.
Publicado: (2023) -
Exactly solvable models in many-body theory
por: March, N H, et al.
Publicado: (2016) -
Exactly solvable models of strongly correlated electrons
por: Essler, Fabian H L, et al.
Publicado: (1994)