Cargando…
Applying Cost-Sensitive Extreme Learning Machine and Dissimilarity Integration to Gene Expression Data Classification
Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-E...
Autores principales: | Liu, Yanqiu, Lu, Huijuan, Yan, Ke, Xia, Haixia, An, Chunlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011754/ https://www.ncbi.nlm.nih.gov/pubmed/27642292 http://dx.doi.org/10.1155/2016/8056253 |
Ejemplares similares
-
SUMMATION OF DISSIMILAR STIMULI APPLIED TO LEAFLETS OF SENSITIVE BRIER (SCHRANKIA)
por: Bibb, Lewis B.
Publicado: (1921) -
Classification and dissimilarity analysis
por: Cutsem, Bernard
Publicado: (1994) -
Learning misclassification costs for imbalanced classification on gene expression data
por: Lu, Huijuan, et al.
Publicado: (2019) -
Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier
por: Subbulakshmi, C. V., et al.
Publicado: (2015) -
Cost-sensitive machine learning
por: Krishnapuram, Balaji, et al.
Publicado: (2012)