Cargando…

Anti-inflammatory effects of Sanguisorbae Radix water extract on the suppression of mast cell degranulation and STAT-1/Jak-2 activation in BMMCs and HaCaT keratinocytes

BACKGROUND: Sanguisorbae Radix (SR) is a well-known herbal medicine used to treat inflammatory disease and skin burns in Asia. In addition, it is used to treat many types of allergic skin diseases, including urticaria, eczema, and allergic dermatitis. SR has been reported to exhibit anti-wrinkle, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Ju-Hye, Yoo, Jae-Myung, Cho, Won-Kyung, Ma, Jin Yeul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011966/
https://www.ncbi.nlm.nih.gov/pubmed/27599590
http://dx.doi.org/10.1186/s12906-016-1317-4
Descripción
Sumario:BACKGROUND: Sanguisorbae Radix (SR) is a well-known herbal medicine used to treat inflammatory disease and skin burns in Asia. In addition, it is used to treat many types of allergic skin diseases, including urticaria, eczema, and allergic dermatitis. SR has been reported to exhibit anti-wrinkle, anti-oxidant, and anti-contact dermatitis bioactivities. METHODS: In this study, we investigated the mechanism underlying the anti-inflammatory effects of SR water extract (WSR) using human keratinocyte (HaCaT) cells and BALB/c mouse bone marrow-derived mast cells (BMMCs). Viability assays were used to evaluate non-cytotoxic concentrations of WSR in both BMMCs and HaCaT cells. To investigate the effect of WSR treatment on the degranulation of IgE/Ag-activated BMMCs, we measured the release of β-hexosaminidase (β-HEX). We determined the production of pro-inflammatory chemokines including thymus and activation regulated chemokine (TARC; CCL17), regulated on activation, normal T-cell expressed and secreted (RANTES; CCL5), macrophage-derived chemokine (MDC; CCL22), and interleukin 8 (IL-8; CXCL8) in stimulated human keratinocytes. The ability of WSR to reduce the expression of pro-inflammatory marker proteins was evaluated by Western blotting in HaCaT cells stimulated with tumor necrosis factor (TNF)-α/interferon (IFN)-γ. RESULT: WSR inhibited IgE/Ag-activated mast cell degranulation in BMMCs. Treatment with various concentrations of WSR decreased β-HEX release in a dose-dependent manner with an IC(50) of 27.5 μg/mL. In keratinocytes, WSR suppressed TNF-α/IFN-γ-induced chemokine production and pro-inflammatory molecules via a blockade STAT-1, Jak-2, p38, and JNK activation. CONCLUSIONS: This results demonstrate that WSR inhibits degranulation of IgE/Ag-activated mast cells and inhibits the production of pro-inflammatory chemokines by suppressing the phosphorylation of p38 and JNK in HaCaT cells.