Cargando…

Removal of SDS from biological protein digests for proteomic analysis by mass spectrometry

BACKGROUND: Metal-organic frameworks (MOFs - MIL-101) are the most exciting, high profiled developments in nanotechnology in the last ten years, and it attracted considerable attention owing to their uniform nanoporosity, large surface area, outer-surface modification and in-pore functionality for t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ilavenil, Soundharrajan, Al-Dhabi, Naif Abdullah, Srigopalram, Srisesharam, Kim, Young Ock, Agastian, Paul, Baaru, Rajasekhar, Choi, Ki Choon, Arasu, Mariadhas Valan, Park, Chun Geon, Park, Kyung Hun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012027/
https://www.ncbi.nlm.nih.gov/pubmed/27601941
http://dx.doi.org/10.1186/s12953-016-0098-5
Descripción
Sumario:BACKGROUND: Metal-organic frameworks (MOFs - MIL-101) are the most exciting, high profiled developments in nanotechnology in the last ten years, and it attracted considerable attention owing to their uniform nanoporosity, large surface area, outer-surface modification and in-pore functionality for tailoring the chemical properties of the material for anchoring specific guest moieties. MOF’s have been particularly highlighted for their excellent gas storage and separation properties. Recently biomolecules-based MOF’s were used as nanoencapsulators for antitumor and antiretroviral controlled drug delivery studies. However, usage of MOF material for removal of ionic detergent-SDS from biological samples has not been reported to date. Here, first time we demonstrate its novel applications in biological sample preparation for mass spectrometry analysis. METHODS: SDS removal using MIL-101 was assessed for proteomic analysis by mass spectrometry. We analysed removal of SDS from 0.5 % SDS solution alone, BSA mixture and HMEC cells lysate protein mixture. The removal of SDS by MIL-101 was confirmed by MALDI-TOF-MS and LC-MS techniques. RESULTS: In an initial demonstration, SDS has removed effectively from 0.5 % SDS solution by MIL-101via its binding attraction with SDS. Further, the experiment also confirmed that MIL-101 strongly removed the SDS from BSA and cell lysate mixtures. CONCLUSIONS: These results suggest that SDS removal by the MIL-101 method is a practical, simple and broad applicable in proteomic sample processing for MALDI-TOF-MS and LC-MS analysis.