Cargando…
Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy
In this study, the classes and structures of nitrogen species in coker gas oil (CGO) are characterized by electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012357/ https://www.ncbi.nlm.nih.gov/pubmed/27656342 http://dx.doi.org/10.1007/s13203-014-0083-9 |
_version_ | 1782451991049404416 |
---|---|
author | Xiaobo, Chen Yibin, Liu Jin, Wang Honghong, Shan Chaohe, Yang Chunyi, Li |
author_facet | Xiaobo, Chen Yibin, Liu Jin, Wang Honghong, Shan Chaohe, Yang Chunyi, Li |
author_sort | Xiaobo, Chen |
collection | PubMed |
description | In this study, the classes and structures of nitrogen species in coker gas oil (CGO) are characterized by electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that the m/z of basic and non-basic nitrogen compounds ranges from 180 to 560 and from 200 to 460, respectively. Six basic nitrogen compounds, N1 (a molecule contains one nitrogen atom, similarly hereinafter), N1O1, N1O1S1, N1O2, N1S1, and N2, are identified by their positive-ion mass spectra, and four non-basic nitrogen compounds, N1, N1O1, N1S1, and N2, are characterized by their negative-ion mass spectra. Among these nitrogen compounds, the N1 class species are the most predominant. Combined with the data of ESI FT-ICR MS and FT-IR, the basic N1 class species are likely pyridines, naphthenic pyridines, quinolines, and benzoquinolines. The most non-basic N1 class species are derivatives of benzocarbazole. The N2 class species are likely amphoteric molecules with pyridine and pyrrole core structures. |
format | Online Article Text |
id | pubmed-5012357 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-50123572016-09-19 Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy Xiaobo, Chen Yibin, Liu Jin, Wang Honghong, Shan Chaohe, Yang Chunyi, Li Appl Petrochem Res Original Article In this study, the classes and structures of nitrogen species in coker gas oil (CGO) are characterized by electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that the m/z of basic and non-basic nitrogen compounds ranges from 180 to 560 and from 200 to 460, respectively. Six basic nitrogen compounds, N1 (a molecule contains one nitrogen atom, similarly hereinafter), N1O1, N1O1S1, N1O2, N1S1, and N2, are identified by their positive-ion mass spectra, and four non-basic nitrogen compounds, N1, N1O1, N1S1, and N2, are characterized by their negative-ion mass spectra. Among these nitrogen compounds, the N1 class species are the most predominant. Combined with the data of ESI FT-ICR MS and FT-IR, the basic N1 class species are likely pyridines, naphthenic pyridines, quinolines, and benzoquinolines. The most non-basic N1 class species are derivatives of benzocarbazole. The N2 class species are likely amphoteric molecules with pyridine and pyrrole core structures. Springer Berlin Heidelberg 2014-09-10 2014 /pmc/articles/PMC5012357/ /pubmed/27656342 http://dx.doi.org/10.1007/s13203-014-0083-9 Text en © The Author(s) 2014 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. |
spellingShingle | Original Article Xiaobo, Chen Yibin, Liu Jin, Wang Honghong, Shan Chaohe, Yang Chunyi, Li Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy |
title | Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy |
title_full | Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy |
title_fullStr | Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy |
title_full_unstemmed | Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy |
title_short | Characterization of nitrogen compounds in coker gas oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and Fourier transform infrared spectroscopy |
title_sort | characterization of nitrogen compounds in coker gas oil by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry and fourier transform infrared spectroscopy |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012357/ https://www.ncbi.nlm.nih.gov/pubmed/27656342 http://dx.doi.org/10.1007/s13203-014-0083-9 |
work_keys_str_mv | AT xiaobochen characterizationofnitrogencompoundsincokergasoilbyelectrosprayionizationfouriertransformioncyclotronresonancemassspectrometryandfouriertransforminfraredspectroscopy AT yibinliu characterizationofnitrogencompoundsincokergasoilbyelectrosprayionizationfouriertransformioncyclotronresonancemassspectrometryandfouriertransforminfraredspectroscopy AT jinwang characterizationofnitrogencompoundsincokergasoilbyelectrosprayionizationfouriertransformioncyclotronresonancemassspectrometryandfouriertransforminfraredspectroscopy AT honghongshan characterizationofnitrogencompoundsincokergasoilbyelectrosprayionizationfouriertransformioncyclotronresonancemassspectrometryandfouriertransforminfraredspectroscopy AT chaoheyang characterizationofnitrogencompoundsincokergasoilbyelectrosprayionizationfouriertransformioncyclotronresonancemassspectrometryandfouriertransforminfraredspectroscopy AT chunyili characterizationofnitrogencompoundsincokergasoilbyelectrosprayionizationfouriertransformioncyclotronresonancemassspectrometryandfouriertransforminfraredspectroscopy |