Cargando…

Blockade of Urotensin II Receptor Prevents Vascular Dysfunction

Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Young-Ae, Lee, Dong Gil, Yi, Kyu Yang, Lee, Byung Ho, Jung, Yi-Sook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Applied Pharmacology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012878/
https://www.ncbi.nlm.nih.gov/pubmed/27582556
http://dx.doi.org/10.4062/biomolther.2015.142
Descripción
Sumario:Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/ kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction.