Cargando…
A multiple hold-out framework for Sparse Partial Least Squares
BACKGROUND: Supervised classification machine learning algorithms may have limitations when studying brain diseases with heterogeneous populations, as the labels might be unreliable. More exploratory approaches, such as Sparse Partial Least Squares (SPLS), may provide insights into the brain's...
Autores principales: | Monteiro, João M., Rao, Anil, Shawe-Taylor, John, Mourão-Miranda, Janaina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier/North-Holland Biomedical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012894/ https://www.ncbi.nlm.nih.gov/pubmed/27353722 http://dx.doi.org/10.1016/j.jneumeth.2016.06.011 |
Ejemplares similares
-
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
por: Chun, Hyonho, et al.
Publicado: (2010) -
A variant of sparse partial least squares for variable selection and data exploration
por: Olson Hunt, Megan J., et al.
Publicado: (2014) -
Radial Basis Function-Sparse Partial Least Squares for Application to Brain Imaging Data
por: Yoshida, Hisako, et al.
Publicado: (2013) -
Gene Function Prediction from Functional Association Networks Using Kernel Partial Least Squares Regression
por: Lehtinen, Sonja, et al.
Publicado: (2015) -
Multiset sparse partial least squares path modeling for high dimensional omics data analysis
por: Csala, Attila, et al.
Publicado: (2020)