Cargando…
Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natur...
Autores principales: | Atzori, Manfredo, Cognolato, Matteo, Müller, Henning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013051/ https://www.ncbi.nlm.nih.gov/pubmed/27656140 http://dx.doi.org/10.3389/fnbot.2016.00009 |
Ejemplares similares
-
Comparison of six electromyography acquisition setups on hand movement classification tasks
por: Pizzolato, Stefano, et al.
Publicado: (2017) -
Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping
por: Cognolato, Matteo, et al.
Publicado: (2022) -
A quantitative taxonomy of human hand grasps
por: Stival, Francesca, et al.
Publicado: (2019) -
Head-mounted eye gaze tracking devices: An overview of modern devices
and recent advances
por: Cognolato, Matteo, et al.
Publicado: (2018) -
A large calibrated database of hand movements and grasps kinematics
por: Jarque-Bou, Néstor J., et al.
Publicado: (2020)