Cargando…
Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine
This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO) for cancer feature gene selection, coupling support vector machine (SVM) for ca...
Autores principales: | Xi, Maolong, Sun, Jun, Liu, Li, Fan, Fangyun, Wu, Xiaojun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013239/ https://www.ncbi.nlm.nih.gov/pubmed/27642363 http://dx.doi.org/10.1155/2016/3572705 |
Ejemplares similares
-
Quantum-behaved particle swarm optimization based on solitons
por: Fallahi, Saeed, et al.
Publicado: (2022) -
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization
por: Sun, Tao, et al.
Publicado: (2017) -
An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization
por: Yang, Zhen-Lun, et al.
Publicado: (2015) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection
por: Wang, Xingmei, et al.
Publicado: (2017)